\(\int \frac {1}{(d+e x)^2 (c d^2+2 c d e x+c e^2 x^2)^{3/2}} \, dx\) [1077]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 32, antiderivative size = 38 \[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=-\frac {1}{4 e (d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \]

[Out]

-1/4/e/(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 38, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {656, 621} \[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=-\frac {1}{4 e (d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \]

[In]

Int[1/((d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2)),x]

[Out]

-1/4*1/(e*(d + e*x)*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2))

Rule 621

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[2*((a + b*x + c*x^2)^(p + 1)/((2*p + 1)*(b + 2*
c*x))), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 656

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^m/c^(m/2), Int[(a +
b*x + c*x^2)^(p + m/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && EqQ[
2*c*d - b*e, 0] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = c \int \frac {1}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{5/2}} \, dx \\ & = -\frac {1}{4 e (d+e x) \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.68 \[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=-\frac {c (d+e x)}{4 e \left (c (d+e x)^2\right )^{5/2}} \]

[In]

Integrate[1/((d + e*x)^2*(c*d^2 + 2*c*d*e*x + c*e^2*x^2)^(3/2)),x]

[Out]

-1/4*(c*(d + e*x))/(e*(c*(d + e*x)^2)^(5/2))

Maple [A] (verified)

Time = 2.50 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.71

method result size
risch \(-\frac {1}{4 c \left (e x +d \right )^{3} \sqrt {c \left (e x +d \right )^{2}}\, e}\) \(27\)
gosper \(-\frac {1}{4 e \left (e x +d \right ) \left (c \,x^{2} e^{2}+2 x c d e +c \,d^{2}\right )^{\frac {3}{2}}}\) \(35\)
default \(-\frac {1}{4 e \left (e x +d \right ) \left (c \,x^{2} e^{2}+2 x c d e +c \,d^{2}\right )^{\frac {3}{2}}}\) \(35\)
trager \(\frac {\left (e^{3} x^{3}+4 d \,e^{2} x^{2}+6 d^{2} e x +4 d^{3}\right ) x \sqrt {c \,x^{2} e^{2}+2 x c d e +c \,d^{2}}}{4 c^{2} d^{4} \left (e x +d \right )^{5}}\) \(68\)

[In]

int(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/c/(e*x+d)^3/(c*(e*x+d)^2)^(1/2)/e

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 97 vs. \(2 (34) = 68\).

Time = 0.29 (sec) , antiderivative size = 97, normalized size of antiderivative = 2.55 \[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=-\frac {\sqrt {c e^{2} x^{2} + 2 \, c d e x + c d^{2}}}{4 \, {\left (c^{2} e^{6} x^{5} + 5 \, c^{2} d e^{5} x^{4} + 10 \, c^{2} d^{2} e^{4} x^{3} + 10 \, c^{2} d^{3} e^{3} x^{2} + 5 \, c^{2} d^{4} e^{2} x + c^{2} d^{5} e\right )}} \]

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="fricas")

[Out]

-1/4*sqrt(c*e^2*x^2 + 2*c*d*e*x + c*d^2)/(c^2*e^6*x^5 + 5*c^2*d*e^5*x^4 + 10*c^2*d^2*e^4*x^3 + 10*c^2*d^3*e^3*
x^2 + 5*c^2*d^4*e^2*x + c^2*d^5*e)

Sympy [F]

\[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=\int \frac {1}{\left (c \left (d + e x\right )^{2}\right )^{\frac {3}{2}} \left (d + e x\right )^{2}}\, dx \]

[In]

integrate(1/(e*x+d)**2/(c*e**2*x**2+2*c*d*e*x+c*d**2)**(3/2),x)

[Out]

Integral(1/((c*(d + e*x)**2)**(3/2)*(d + e*x)**2), x)

Maxima [A] (verification not implemented)

none

Time = 0.19 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.61 \[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=-\frac {1}{4 \, {\left (c^{\frac {3}{2}} e^{5} x^{4} + 4 \, c^{\frac {3}{2}} d e^{4} x^{3} + 6 \, c^{\frac {3}{2}} d^{2} e^{3} x^{2} + 4 \, c^{\frac {3}{2}} d^{3} e^{2} x + c^{\frac {3}{2}} d^{4} e\right )}} \]

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="maxima")

[Out]

-1/4/(c^(3/2)*e^5*x^4 + 4*c^(3/2)*d*e^4*x^3 + 6*c^(3/2)*d^2*e^3*x^2 + 4*c^(3/2)*d^3*e^2*x + c^(3/2)*d^4*e)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.61 \[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=-\frac {1}{4 \, {\left (e x + d\right )}^{4} c^{\frac {3}{2}} e \mathrm {sgn}\left (e x + d\right )} \]

[In]

integrate(1/(e*x+d)^2/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(3/2),x, algorithm="giac")

[Out]

-1/4/((e*x + d)^4*c^(3/2)*e*sgn(e*x + d))

Mupad [B] (verification not implemented)

Time = 9.93 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.97 \[ \int \frac {1}{(d+e x)^2 \left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx=-\frac {\sqrt {c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2}}{4\,c^2\,e\,{\left (d+e\,x\right )}^5} \]

[In]

int(1/((d + e*x)^2*(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(3/2)),x)

[Out]

-(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2)/(4*c^2*e*(d + e*x)^5)